Voltage dependence of a stochastic model of activation of an alpha helical S4 sensor in a K channel membrane.

نویسنده

  • S R Vaccaro
چکیده

The voltage dependence of the ionic and gating currents of a K channel is dependent on the activation barriers of a voltage sensor with a potential function which may be derived from the principal electrostatic forces on an S4 segment in an inhomogeneous dielectric medium. By variation of the parameters of a voltage-sensing domain model, consistent with x-ray structures and biophysical data, the lowest frequency of the survival probability of each stationary state derived from a solution of the Smoluchowski equation provides a good fit to the voltage dependence of the slowest time constant of the ionic current in a depolarized membrane, and the gating current exhibits a rising phase that precedes an exponential relaxation. For each depolarizing potential, the calculated time dependence of the survival probabilities of the closed states of an alpha helical S4 sensor are in accord with an empirical model of the ionic and gating currents recorded during the activation process.

منابع مشابه

Role of Charged Residues in the S1–S4 Voltage Sensor of BK Channels

The activation of large conductance Ca(2+)-activated (BK) potassium channels is weakly voltage dependent compared to Shaker and other voltage-gated K(+) (K(V)) channels. Yet BK and K(V) channels share many conserved charged residues in transmembrane segments S1-S4. We mutated these residues individually in mSlo1 BK channels to determine their role in voltage gating, and characterized the voltag...

متن کامل

Voltage Sensor–Trapping Enhanced Activation of Sodium Channels by β-Scorpion Toxin Bound to the S3–S4 Loop in Domain II

Polypeptide neurotoxins alter ion channel gating by binding to extracellular receptor sites, even though the voltage sensors are in their S4 transmembrane segments. By analysis of sodium channel chimeras, a beta-scorpion toxin is shown here to negatively shift voltage dependence of activation and enhance closed state inactivation by binding to a receptor site that requires glycine 845 (Gly-845)...

متن کامل

Critical role of conserved proline residues in the transmembrane segment 4 voltage sensor function and in the gating of L-type calcium channels.

The fourth transmembrane segment (S4) has been shown to function as a voltage sensor in voltage-gated channels. On membrane depolarization, a stretch of S4 moves outward and initiates a number of conformational changes that ultimately lead to channel opening. Conserved proline residues are in the middle of the S4 of motifs I and III in voltage-dependent Ca2+ channels. Because proline often intr...

متن کامل

Neutralization of Gating Charges in Domain II of the Sodium Channel α Subunit Enhances Voltage-Sensor Trapping by a β-Scorpion Toxin

beta-Scorpion toxins shift the voltage dependence of activation of sodium channels to more negative membrane potentials, but only after a strong depolarizing prepulse to fully activate the channels. Their receptor site includes the S3-S4 loop at the extracellular end of the S4 voltage sensor in domain II of the alpha subunit. Here, we probe the role of gating charges in the IIS4 segment in beta...

متن کامل

Kinetic Relationship between the Voltage Sensor and the Activation Gate in spHCN Channels

Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels are activated by membrane hyperpolarizations that cause an inward movement of the positive charges in the fourth transmembrane domain (S4), which triggers channel opening. The mechanism of how the motion of S4 charges triggers channel opening is unknown. Here, we used voltage clamp fluorometry (VCF) to detect S4 conformational c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

متن کامل
عنوان ژورنال:
  • The Journal of chemical physics

دوره 135 9  شماره 

صفحات  -

تاریخ انتشار 2011